DEPARTMENT OF EEE :: ANITS (Proposed scheme under Autonomous w.e.f. 2015-16 admitted batch)

FOURTH YEAR FIRST SEMESTER

Cada			Instruction	Semester Examina	r End ation	Sessional	Total	Cuadita
Code	Subject	Category	Week	Duration (periods)	Marks	Marks	Marks	Credits
EEE 411	Open Elective-II	OE	4	3	60	40	100	3
EEE 412	Professional Elective-II	PE	4	3	60	40	100	3
EEE 413	Professional Elective-III	PE	4	3	60	40	100	3
EEE 414	Power System Analysis	PC	4	3	60	40	100	3
EEE 415	Power Semiconductor Drives	PC	4	3	60	40	100	3
EEE 416	Power System Protection	PC	4	3	60	40	100	3
EEE 417	Power Electronics Laboratory	PC	3	3	50	50	100	2
EEE 418	Electrical Machines Laboratory-II	PC	3	3	50	50	100	2
EEE 419	Industrial Training *	IT				100	100	2
EEE 4110	Project Work PW		6			60	60	4
	Total	36	24	460	500	960	28	

OE-II: 1) Robotics (Mech) 2) Finite Element Analysis (Mech) 3) Introduction to VLSI system design (ECE) 4) Introduction to image processing / Computer Vision (ECE)

PE-II: 1) Electrical Drives & Traction 2) DCS 3) DSP 4) Power Quality & FACTS

PE-III: 1) Electrical and Hybrid Vehicles 2) Electrical Engineering Drawing 3) JAVA 4) HVDC

FOURTH YEAR SECOND SEMESTER

		Category	Instruction	Semester Examina	[.] End ation	Sessional	Total		
Code	Subject	go-y	Periods per Week	Duration (periods)	Marks	Marks	Marks	Credits	
EEE 421	Engineering Economics & Mgmt.	HS	4	3	60	40	100	3	
EEE 422	Professional Elective-IV	PE	4	3	60	40	100	3	
EEE 423	Energy Management & Control	PC	4	3	60	40	100	3	
EEE 424	Power System Simulation Lab	PC	3	3	50	50	100	2	
EEE 425	Control Systems Laboratory	PC	3	3	50	50	100	2	
EEE 426	Project Work	PW	6	3	80	60	140	8	
	MOOC's	OE					100	2	
	Total		24	18	360	280	740	23	

PE-IV: 1) Non-Linear Systems; 2) Power System Reliability 3) Design of Electrical Machines 4) Process Control and Automation

FUNDAMENTALS (DF ELECTRIC	POWER UTILIZATION
(O]	pen Elective-II	

EEE 411	Credits : 3
Instruction : 3 Periods & 1 Tut/Week	Sessional Marks : 40
End Exam : 3 Hours	End Exam Marks : 60

UNIT I: Periods]

ELECTRIC DRIVES: Type of electric drives, choice of motor, starting and running characteristics, speed control, temperature rise, particular applications of electric drives, types of industrial loads, continuous, intermittent and variable loads, load equalization.

UNIT II:

Periods]

ELECTRIC HEATING: Advantages and methods of electric heating, resistance heating induction heating and dielectric heating.

ELECTRIC WELDING: Electric welding, resistance and arc welding, electric welding equipment, comparison between A.C. and D.C. Welding.

UNIT III:

Periods]

ILLUMINATION FUNDAMENTALS: Introduction, terms used in illumination, laws of illumination, polar curves, photometry, integrating sphere, sources of light.

VARIOUS ILLUMINATION METHODS: Discharge lamps, MV and SV lamps – comparison between tungsten filament lamps and fluorescent tubes, Basic principles of light control, Types and design of lighting and flood lighting.

UNIT IV:

Periods]

System of electric traction and track electrification. Review of existing electric traction systems in India. Special features of traction motor, methods of electric braking-plugging rheostatic braking and regenerative braking, problems on it.

UNIT V:

Periods]

Mechanics of train movement. Speed-time curves for different services – trapezoidal and quadrilateral speed time curves.

TEXT BOOKS:

1. Utilisation of Electric Energy – by E. Openshaw Taylor, Orient Longman.

2. Art & Science of Utilization of electrical Energy - by Partab, Dhanpat Rai & Sons.

REFERENCE BOOKS:

1. Utilization of Electrical Power including Electric drives and Electric traction – by N.V. Surya narayana, New Age International (P) Limited, Publishers, 1996.

2. Generation, Distribution and Utilization of electrical Energy – by C.L. Wadhwa, New Age International (P) Limited, Publishers, 1997.

[12

[12

[12

[12

[12

ELECTRICAL DRIVES AND TRACTION (Professional Elective-II)

(1101000101111	
EEE 412 (1)	Credits : 3
Instruction : 3 Periods & 1 Tut/Week	Sessional Marks : 40
End Exam : 3 Hours	End Exam Marks : 60

Course Outcomes: At the end of the course, students will be able to:

CO	BL	CO Statement
CO1	BL-3	CLASSIFY the electric drives and ANALYZE their stability
CO2	BL-3	MODIFY speed torque characteristics of three phase induction motors, d.c. motors and synchronous motors.
CO3	BL-3	ANALYZE in detail the starting of dc & ac motors.
CO4	BL-3	ANALYZE electric braking in detail employed to dc & ac motors.
CO5	BL-3	DETERMINE the specific energy consumption for a particular run and EXPLAIN the factors affecting it.

	Program Outcomes (POs)											DSO _a		
	Ι) omair	ı Speci	ific PO	S	Domain Independent POs							r 508	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	-	-	-	-	-	-	-	-	-	1	-	-
CO2	3	3	1	-	-	-	-	-	-	-	-	1	-	-
CO3	3	2	-	-	-	-	-	-	-	-	-	1	-	-
CO4	3	3	-	-	-	-	-	-	-	-	-	1	-	-
CO5	3	-	-	-	-	-	-	-	-	-	-	1	-	-

	JUSTIFICATION STATEMENT FOR CO-PO MAPPING								
COs	POs	Level	Description						
CO1	PO1	3	The basics of electric drives using basic sciences & fundamental engineering						
			concepts are discussed						
CO1	PO2	3	The stability concepts were discussed in detail and henceforth the stability of						
			electric drive is analyzed by using the same						
CO2	PO2	3	The speed control techniques of electric motors are analyzed in detail.						
CO2	PO3	1	The choice & design of appropriate circuit for obtaining a desired speed of an						
			electric motor is discussed .						
CO2	PO12	1	Recognize the need for complete analysis on speed control for better industrial						
			application.						
CO3	PO1	3	The starting techniques of electric motors are discussed in detail using						
			electrical engineering concepts						
CO3	PO2	2	The acceleration time & energy relations during starting are analyzed in detail						
			for specific motor & load torques						
CO3	PO12	1	Recognize the need for complete analysis of electrical starting for better						
			industrial application.						
CO4	PO1	3	The braking techniques of electric motors are discussed in detail using						
			electrical engineering concepts						

CO4	PO2	3	The energy relations during different electrical braking techniques & their dynamics are analyzed in detail.
CO4	PO12	1	Recognize the need for complete analysis of electrical braking for better industrial application.
CO5	PO1	3	The mechanics of electric traction are discussed in detail by electrical engineering concepts.

Periods] ELECTRIC DRIVE: Concept and classification of electric drives, four quadrant operation, types of loads, dynamics of motor load combination, steady-state and transient stability of drive.

Periods] CHARACTERISTICS OF MOTORS: Basic relations and characteristics and modified speed torque characteristics of D.C shunt and series motors, characteristics of 3- phase induction and synchronous motors and modification of their speed – torque characteristics

UNIT-III Periods]

ELECTRIC STARTING: Effect of starting on power supply, motor and load, methods of starting, acceleration time, energy relations during starting, and methods to reduce energy loss during starting.

UNIT-IV

UNIT-I

UNIT-II

Periods]

ELECTRIC BRAKING: Types of braking, braking of D.C motors during lowering of loads, braking while stopping, braking of induction and synchronous motors, energy relations during braking.

UNIT-V

Periods]

ELECTRICAL TRACTION: General features and systems of traction electrification, traction motors, loco wheel arrangement and riding qualities, transmission of drive, traction motor control (series-parallel control), traction equipment and collection gear, train movement, speed-time curve and speed distance curve, specific energy consumption (sec) and factors affecting it.

Text Books:

- 1. S. K. PILLAI, "A First Course On Electric Drives", 2nd edition, 2004, wiley esastren ltd.
- 2. E. OPEN SHAW TAYLOR AND V.V.L. RAO ORIENTLONG man "Utilisation of electrical energy", 2nd edition, 2004, Tata Mc Graw Hill Pub.

Reference Book:

- 1. H. PARTAB, "Modern Electric Traction". 3rd edition, 2003, DHANPAT ROY & Co.
- 2. VEDAM SUBRAMANYAM, "ELECTRIC DRIVES" 4th edition,2006 TMH Pub.

[10

[10

[10

[15

[15

DIGITAL CONTROL SYSTEMS
(Professional Elective-II)EEE 412 (2)Credits : 3Instruction : 3 Periods & 1 Tut/WeekSessional Marks : 40End Exam : 3 HoursEnd Exam Marks : 60

Course Outcomes:

At the end of the course student should be able to:

CO's	COla Deservition
Number	CO's Description
C01	Able to understand the effects of sampling in performance
CO2	Able to represent sampled data system using difference equations, transfer function, block diagram
CO3	Able to understand and design discrete control system using transform techniques
CO4	Analyze discrete time systems using signal flow graph and state space analysis
CO5	Able to understand the stability of sampled data signals

Program Matrix

	Program Outcomes (POs)											DSO ₂		
	Ι) omair	1 Speci	ific PO	S	Domain Independent POs							rs	US
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	0	2	0	0	0	0	0	0	0	0	0	0	-	-
CO2	0	0	3	2	0	0	0	0	0	0	0	0	-	-
CO3	0	0	0	3	0	0	0	2	1	0	0	0	-	-
CO4	0	3	0	0	0	0	0	2	1	0	0	0	-	-
CO5	0	3	2	0	0	0	0	0	1	0	0	0	-	-

UNIT-I:

SIGNAL CONVERSION AND PROCESSING: Introduction, block diagram representation of s/h device, mathematical modelling of the sampling process, finite-pulse width sampler, folding frequency. The sampling theorem, mathematical modelling of the sampling, ideal sampler, sample and hold devices, expressions of $f^*(s)$, s-plane properties of $f^*(s)$, zero-order hold, frequency-domain characteristics of zoh, first order hold, fractional hold device.

UNIT-II:

THE Z-TRANSFORM: The Z-Transform Definition, Relationship With Laplace Transform, Alternate Expression For F(Z), Evaluation Of Z-Transform, Relationship Between S-Plane And Z-Plane, Inverse Z-Transform, Non Uniqueness Of The Z-Transform, Defining Equations Of The Inverse Z-Transform, Theorems Of The Z-Transform, Limitations Of The Z-Transform.

UNIT-III:

TRANSFER FUNCTION, BLOCK DIAGRAMS & SIGNAL FLOW GRAPHS: Transfer functions, block diagrams, signal flow graphs, the pulse transfer function and z-transform function, systems with cascaded elements separated by a sampler & not separated by a sampler, pulse transform function of zoh and relation between g(s) and g(z), closed loop systems, characteristic equation, physical realizability.

UNIT-IV:

THE STATE VARIABLE TECHNIQUES: State equations of descrete systems with sample and hold devices, state transition equations, the recursive method, the z-transform method, state equations and

transfer function, characteristic equation, eigen values, eigen vectors, diagonalization of the 'a' matrix, jordan canonical form computing state transition matrix.

UNIT-V:

CONTROLLABILITY, OBSERVABILITY, STABILITY: Definition of controllability, theorem on controllability, definition of observability, theorem on observability, relationships between controllability and observability and transfer function, stability of linear digital control systems, definition & theorem, stability tests, bi-linear transformation method, jury's stability test.

Text Books:

- 1. Digital control systems by b.c. Kuo, second edition, saunders college publication-1992.
- 2. Digital Control Systems By Ogata.
- 3. Digital Control Systems (Software & Hardware) By Laymount & Azzo.

DIGITAL SIGNAL PROCESSING (Professional Elective-II)

EEE 412 (3)	Credits : 3
Instruction : 3 Periods & 1 Tut/Week	Sessional Marks : 40
End Exam : 3 Hours	End Exam Marks : 60

Course Outcomes:

By the e	By the end of the course, the student will be able to:					
CO1	Acquired knowledge on different types of signals and properties of systems					
CO2	Use Z - transforms and discrete time Fourier transforms to analyze a digital system.					
CO3	Acquired knowledge on FFT for fast computation of DFT.					
CO4	Ability to design and realize IIR using different techniques.					
CO5	Ability to design and realize FIR using different techniques.					

SYLLABUS

UNIT I

periods]

Introduction to Digital Signal Processing & Applications of Z-Transforms: Introduction to Digital Signal Processing: Discrete time signals & sequences, linear shift invariant systems, stability, and causality. Linear constant coefficient difference equations. Frequency domain representation of discrete time signals and systems. Review of Z-transforms, Applications of Z – transforms, solution of difference equations , Block diagram representation of linear constant-coefficient difference equations.

UNIT-II:

periods]

Discrete Fourier series and Discrete Fourier Transforms: Properties of discrete Fourier series, DFS representation of periodic sequences, Discrete Fourier transforms: Properties of DFT, linear convolution of sequences using DFT, Computation of DFT. Relation between Z-transform and DFS.

UNIT-III:

periods]

Fast Fourier Transforms: Frequency domain representation of discrete time signals and systems – Fast Fourier transforms (FFT) – Radix–2 decimation in time and decimation in frequency FFT Algorithms – Inverse FFT – and FFT for composite N.

UNIT IV:

periods]

IIR Digital Filter Design Techniques: Introduction, Analog low pass filter design, Butterworth and Chebyshev approximations, Frequency transformations, Design of HPF, Design of IIR Digital filters from analog filters, Bilinear Transformations method, Impulse invariance method. Realization of Digital filter: Direct form-I, Direct form-II, cascade form, Parallel form.

[12

[12

[12

[12

UNIT V:

periods]

FIR Digital Filter Design Techniques: Introduction, Fourier Series method to design digital filter, Design of FIR Digital Filters using Window Techniques, Frequency Sampling technique, Comparison of IIR & FIR filters.

TEXT BOOKS:

- 1. Digital Signal Processing, Principles, Algorithms, and Applications: John G. Proakis, Dimitris G. Manolakis, Pearson Education / PHI, 2007.
- 2. Digital Signal Processing Alan V. Oppenheim, Ronald W. Schafer, PHI Ed., 2006
- 3. Digital Signal Processing K Raja Rajeswari, I.K. International Publishing House.

Reference Books:

- 1. Digital Signal Processing: Andreas Antoniou, TATA McGraw Hill, 2006
- 2. Digital Signal Processing: MH Hayes, Schaum's Outlines, TATA McGraw Hill, 2007.
- 3. DSP Primer C. Britton Rorabaugh, Tata McGraw Hill, 2005.
- 4. Fundamentals of Digital Signal Processing using Matlab Robert J. Schilling, Sandra L. Harris, Thomson, 2007.

POWER QUALITY & FACTS						
(Professiona	l Elective-II)					
EEE 412 (4)	Credits: 3					
Instruction: 3 Periods & 1 Tut/Week	Sessionals Marks:40					
End Exam: 3 Hours	End Exam Marks:60					

Course Outcomes: At the end of the course the student will be able to:

CO1	Assess the severity of power quality problems in distribution system.
CO2	Analyze voltage and harmonic related power quality issues.
CO3	Analyze the effect of symmetrical and unsymmetrical faults on power system.
CO4	Identify configuration of FACTS controller and their application to improve
	power quality.

Program Matrix

					Р	rograi	n Out	comes	(POs)				DG	Ωα	
	Domain Specific POs						Domain Independent POs							PSUS	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	2	2	2	2	1	2	1	1	0	2	1	-	-	
CO2	2	2	2	2	2	1	2	2	2	0	2	1	-	-	
CO3	2	2	2	2	2	1	2	2	2	0	2	1	-	-	
CO4	2	2	2	2	2	1	2	2	2	0	2	1	-	-	

UNIT-I

POWER QUALITY AN OVERVIEW

Introduction of the Power Quality (PQ) problem, Terms used in PQ: Voltage, Sag, Swell, Surges, Harmonics, over voltages, spikes, Voltage fluctuations, Transients, Interruption, overview of power quality phenomenon, Sources of PQ problems, Remedies to improve PQ, power quality monitoring.

UNIT-II

VOLTAGE SAG-CHARACTRIZATION

Voltage sag - definition, causes of voltage sag, voltage sag magnitude- monitoring, theoretical calculations, voltage sag calculation in non-radial systems, meshed systems, voltage sag duration, Types of three phase unbalanced sags, phase angle jumps, magnitude and phase angle jumps for three phase unbalanced sags, load influence on voltage sags.

UNIT-III HARMONICS

Harmonic distortion, Voltage versus Current distortion, Harmonic indexes, Harmonic sources from commercial loads, Harmonic sources from industrial loads; Locating Harmonic sources, System response characteristics, effects of harmonic distortion.

UNIT-IV

FACTS

Power flow in AC systems, need of FACTS controllers, relative importance of controllable parameters, basic types of facts controllers, shunt, series and combined shunt series controllers.

[10 Periods]

[12 Periods]

[12 Periods]

[12 Periods]

UNIT-V CUSTOM POWER DEVICES

[14 Periods]

Custom Power Devices - An Introduction: Overview of mitigation methods - from fault to trip, reducing the number of faults, reducing the fault clearing time, installing mitigation equipment, improving equipment immunity.

Utility-Customer Interface, Introduction to CP devices: Network Reconfiguring Devices, Load Compensation and Voltage Regulation using DSTATCOM, Protecting Sensitive loads using DVR, Unified Power Quality Conditioner (UPQC).

TEXT BOOKS:

- Math H J Bollen, "Understanding Power Quality Problems", IEEE Press, Standard Publishers Distributors, 1st edition, 2001.
- 2. Narain G. Hingorani, Laszlo Gyugyi, "Understanding FACTS–Concepts and Technology of Flexible AC Transmission Systems", Wiley India publications, 2011.
- 3. Arindham Ghosh, Gerard Ledwich, Kluwer, "Power Quality Enhancement Using Custom Power Devices", Academic Publishers, 1st edition, 2002.

ELECTRICAL AND HYBRID VEHICLES
(Professional Elective-III)EEE 413 (1)Credits: 3Instruction: 3 Periods & 1 Tut/WeekSessionals Marks:40End Exam: 3 HoursEnd Exam Marks:60

Course Outcomes: At the end of the course the student will be able to:

CO	BL	CO Statement
CO1	BL-3	Associate with the history of hybrid vehicles and physics involved in the conventional vehicle movement to Calculate the total tractive force required for vehicle motion.
CO2	BL-3	Classify various types of hybrid vehicle configurations to interpret their compatibility in specific applications.
CO3	BL-4	Identify specific configuration of electric vehicle, electric drive machine and power converter as per the requirement to Analyze the performance of system design.
CO4	BL-3	Distinguish the features and suitability of energy storage devices to Relate them as per the requirement.
CO5	BL-4	Compare various energy management strategies to Select them appropriately in specific EHV/EV controller design.

					P	rograi	m Outo	comes	(POs)				DC	Ωα
	Domain Specific POs Domain Independent POs							rs	Us					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	1	-	-	-	-	-	-	-	-	1	-	-
CO2	2	3	1	-	-	-	-	-	-	-	-	1	-	-
CO3	2	3	2	-	2	-	-	-	-	-	-	1	-	2
CO4	2	3	1	-	2	-	-	-	-	-	-	1	-	1
CO5	2	2	2	-	1	-	-	-	-	-	-	1		1

		JUST	TIFICATION STATEMENT FOR CO-PO MAPPING
COs	POs	Level	Description
COL	PO1	2	Tractive effort for vehicle movement is calculated with the fundamental
	roi		knowledge of basic engineering physics and mathematics.
COL	PO2	3	Based on the different types of vehicle resistance calculation, formulate the
	102	r02 3	tractive effort force equation and analyze the results in terms of vehicle speed.
COL	PO3	1	Calculate the design parameters of vehicles with the knowledge of different
001			resistance and force calculations.
COL	PO12	1	Recognize the need of history of vehicles and vehicle dynamic calculations, in
001			order to be compatible enough for vehicle designing and manufacturing sector.
			The fundamental knowledge of basic engineering mathematics, engineering
CO2	O2 PO1	2	physics and electrical engineering is utilized for hybrid vehicle design and
			power flow control.

CO2	PO2	3	Based on the knowledge of hybrid vehicle types and their individual configuration and application, power flow structure is analyzed and efficiency is calculated
CO2	PO3	1	The classification and basic configuration knowledge of hybrid vehicles are utilized for designing hybrid vehicle configuration based on the source availability and applicability.
CO2	PO12	1	Recognize the need of basic hybrid vehicle design and classification, in order to be compatible enough for hybrid vehicle manufacturing requirement.
CO3	PO1	2	With the knowledge of fundamental electrical engineering and engineering physics, specific configuration of electric vehicle from various types, is selected.
CO3	PO2	3	In reference to electric vehicle configurations, mathematical design of power electronic converters, dc drives, ac drives are formulated and their performance parameters are analyzed.
CO3	PO3	2	Design parameters and control methods of various electric vehicle components such as DC-DC converters, DC-AC Inverters, DC drives, AC drives are calculated based on their individual operational analysis.
CO3	PO5	1	Using MATLAB software the performance specifications of power electronic converters and machine drives are analyzed for a given electric vehicle design.
CO3	PO12	1	Recognize the need of electric vehicle classification and individual component design, in order to be compatible enough for electric vehicle manufacturing requirement.
CO3	PSO1	2	With the knowledge of power electronic converters and dc/ac drives applicability in electric vehicles, as per the requirement and availability, electric vehicle designs are analyzed.
CO4	PO1	2	The fundamental knowledge of basic engineering science, engineering mathematics are utilized for analyzing energy storage elements such as batteries, fuel cell, flywheel and ultracapacitor.
CO4	PO2	3	With knowledge of mathematical designs for energy storage devices such as fuel cell, flywheel and ultracapacitor, their application criteria in vehicle design are formulated and performance parameters are analyzed.
CO4	PO3	1	Novel electric vehicle designs are analyzed with renewable energy source based storage elements.
CO4	PO5	2	Using MATLAB software energy storage devices such as fuel cell are analyzed with their mathematical model to decide performance specifications.
CO4	PO12	1	Recognize the need of different energy storage design for hybrid/electric vehicle, in order to be compatible enough for their design and manufacturing requirement.
CO4	PSO2	1	With the knowledge of energy storage elements, their applicability with different switching devices and drives, as per the requirement and availability, electric vehicle designs are analyzed.
CO5	PO1	2	With the fundamental knowledge of basic engineering physics and engineering mathematics, control strategies such as fuzzy logic and design constraints for hybrid/battery vehicles are realized.
CO5	PO2	2	With knowledge of different energy management strategies, their application criteria in specific vehicle design are formulated and their performance aspects are analyzed.
CO5	PO3	2	With knowledge on energy management strategies and case studies, design considerations for specific vehicle configurations are formulated.
CO5	PO5	1	Using MATLAB software, management strategy tool such as fuzzy logic

			controller is developed to design control system for vehicles.
CO5	PO12	1	Control technique for drives in electric vehicle application is formulated with the
000	1012	-	knowledge of energy management strategies.

UNIT-I

Conventional Vehicles: Basics of vehicle performance, vehicle power source characterization, transmission characteristics, mathematical models to describe vehicle performance.

Introduction to Hybrid Electric Vehicles: History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies.

UNIT-II

Hybrid Electric Drive-trains: Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis.

UNIT-III

Electric Drive-trains: Basic concept of electric traction, introduction to various electric drive train topologies, power flow control in electric drive-train topologies, fuel efficiency analysis. Electric Propulsion unit: Introduction to electric components used in hybrid and electric vehicles, Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency.

UNIT-IV

Energy Storage: Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Battery based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Super Capacitor based energy storage and its analysis, Flywheel based energy storage and its analysis, Hybridization of different energy storage devices. Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems.

UNIT-V

[12 Periods]

Energy Management Strategies: Introduction to energy management strategies used in hybrid and electric vehicles, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy management strategies. Case Studies: Design of a Hybrid Electric Vehicle (HEV), Design of a Battery Electric Vehicle (BEV).

Text / References:

- 1. C. Mi, M. A. Masrur and D. W. Gao, "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", John Wiley & Sons, 2011.
- 2. S. Onori, L. Serrao and G. Rizzoni, "Hybrid Electric Vehicles: Energy Management Strategies", Springer, 2015.
- 3. M. Ehsani, Y. Gao, S. E. Gay and A. Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design", CRC Press, 2004.
- 4. T. Denton, "Electric and Hybrid Vehicles", Routledge, 2016.

[10 Periods]

[12 Periods]

[10 Periods]

[12 Periods]

UNIT: I

Periods]

Different views of different types of nuts and bolts including foundation bolts with threads. Different types of welded joints, riveted joints, keys and cotters. Different types of solid and flexible couplings Pulleys flat and V-belt drive and gears used in Electrical Machine Drive. Knifes switches: Single, Double and Triple pole types, Main Switches, Energy meters.

UNIT: II

Periods

Pin insulators, Sackless Insulators and Disc type Insulators for L.T. and H.T. Lines. String Insulators and Guard Ring for String Insulators. Cable supports and Holders. Sketches of C.T., P.T. and other Relays with feeders and distributors.

UNIT: III

Periods]

Development of Machine Winding: D.C. pole windings. D.C. Lap winding/Single and Double layer. D.C. wave winding: Single and Double layer. Placing of carbon brushes on the commutator segments showing the direction of current.

UNIT: IV

Periodsl

Free Hand Sketches: Different Industrial Electrical symbols. Pole of Machine: Different views. Armature of D.C. Machine: Different views. Commutator of D. C. Machine: Different views. D.C. Machine brush and brush holder. Single-phase Transformer. Three-phase transformer. Cross arms and their arrangement with various Insulators. Different types of poles and Towers with feeders and Distributors and Lightning Arrestors. Stay Arrangement and guard wires arrangement for roads and rail lines crossing. Battery Charging Circuit with Battery.

UNIT: V

Periods] Earthing - different types

Text Book:

- 1. Electrical Engineering Drawing by G.B. Bharadwajan.
- 2. Electrical Engineering Drawing by Dargon.
- 3. Electrical Engineering Drawing by Narang.
- 4. Electrical Engineering Drawing by Surjit Singh.

ELECTRICAL ENGINEERING DRAWING (Professional Elective-III)

EEE 413 (2)	Credits : 3
Instruction : 3 Periods & 1 Tut/Week	Sessional Marks : 40
End Exam : 3 Hours	End Exam Marks : 60

[12

[12

[14

[10

[12

JAVA						
(Professional E	lective-III)					
EEE 413 (3)	Credits : 3					
Instruction : 3 Periods & 1 Tut/Week	Sessional Marks : 40					
End Exam : 3 Hours	End Exam Marks : 60					

Pre-requisites: Object oriented concepts, C++ programming

Course Outcomes:

By the	By the end of the course, the student will be able to:					
COL	Understand the concept of OOP as well as the purpose and usage principles of					
	inheritance, polymorphism, and encapsulation.					
CO2	Understand classes, objects, members of a class and the relationships among them					
	needed for a specific problem.					
CO3	Design and develop programs using packages and interfaces.					
CO4	Develop the mechanism of exceptional handling and multithread					
CO5	Implements the concept of event handling and GUI interface using Java swings					

Program Matrix

		Program Outcomes (POs)												
	Domain Specific POs				s		Domain Independent POs						r508	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	3	3	3	3	3	3	3		3	2	3	2
CO2	2	3	3	3	3	3	3	3	3		3	2	3	2
CO3	3	3		2	3	3	3	3	3		3	3	2	2
CO4	3	3	3	1	3	3	3	3	3		3	3	3	3

SYLLABUS

UNIT I:

[12 Periods]

[12 Periods]

Introduction: OOP Principles, Encapsulation, Inheritance and Polymorphism, data types, variables, declaring variables, scope and life time of variables, arrays, operators, control statements, type conversion and casting.

UNIT II:

Classes and Objects : Concepts of classes and objects, class fundamentals Declaring objects, introducing methods, constructors, usage of static with data and methods, access control, this key word, garbage collection, overloading methods and constructors, parameter passing – call by value, recursion..

UNIT III:

Inheritance: Basic concepts, member access rules, usage of super key word, types of inheritance, method overriding, abstract classes, dynamic method dispatch, final keyword. **Packages and Interfaces :** Defining, Creating and Accessing a Package, Understanding CLASSPATH, importing packages, differences between classes and interfaces, defining an interface, implementing interface, applying interfaces, variables in interface and extending interfaces.

[12 Periods]

UNIT IV:

[12 Periods]

Exception Handling and Multithreading : Concepts of Exception handling, types of exceptions, usage of try, catch, throw, throws and finally keywords, Built-in exceptions, creating own exception sub classes, Concepts of Multithreading, differences between process and thread, thread life cycle, creating multiple threads using Thread class, Runnable interface, Synchronization, thread priorities, inter thread communication, deadlocks.

UNIT V:

[12 Periods]

Event Handling: Events, Event sources, Event classes, Event Listeners, Delegation event Applets and swings: Applets – Concepts of Applets, differences between applets and applications, life cycle of an applet, types of applets, creating applets, passing parameters to applets, graphics class model, handling mouse and keyboard events, Adapter classes.

Swings – JApplet, JFrame and JComponent, Icons and Labels, text fields, buttons –The JButton class, Check boxes, Radio buttons, Combo boxes, Tabbed Panes, Scroll Panes, Trees, andTables.

Text Books:

- 1. The Complete Reference Java J2SE 5th Edition, Herbert Schildt, TMH Publishing Company Ltd, New Delhi.
- "Learn Object Oriented Programming Using Java: An UML Treatment using Live Examples from Science and Engineering," Dr. N.B. Venkateswarlu, Dr. E.V. Prasad, S Chand, New Delhi.
- 3. Big Java 2nd Edition, Cay Horstmann, John Wiley and Sons.

Reference Books:

- 1. Java How to Program, Sixth Edition, H.M.Dietel and P.J.Dietel, Pearson Education/PHI
- 2. Core Java 2, Vol 1, Fundamentals, Cay.S.Horstmann and Gary Cornell, Seventh Edition, Pearson Education.
- 3. Core Java 2, Vol 2, Advanced Features, Cay.S.Horstmann and Gary Cornell, Seventh Edition, Pearson Education.
- 4. Beginning in Java 2, Iver Horton, Wrox Publications. 5. Java, Somasundaram, Jaico.

HVDC (Professional Elective-III)						
EEE 413 (4)	Credits: 3					
Instruction: 3 Periods & 1 Tut/Week	Sessionals Marks:40					
End Exam: 3 Hours	End Exam Marks:60					

Course Outcomes: At the end of the course the student will be able to:

CO	BL	CO Statement
COL	BI 2	Differentiate HVAC and HVDC transmission systems and to summarize
COI	DL-2	different types of HVDC links.
CO2	DI 2	Apply 6-pulse, 12-pulse converter to Determine the equivalent circuit of
	DL-3	HVDC converter.
CO2	BL-5	Analyze the Converter control characteristics to Design firing angle control for
COS		HVDC system.
CO4	DI 4	Analyze different types of faults and protection schemes used in HVDC system
04	DL-4	and to Compute the filter parameters to eliminate the harmonics.
CO5		Explain the needs of FACTS controllers in power systems and to Classify
COS	DL-4	different FACTS controllers.

		Program Outcomes (POs)												
	Domain Specific POs					Domain Independent POs							US	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	-	2	-	-	-	-	-	-	2	2	-
CO2	2	3	2	-	2	-	-	-	-	-	-	2	3	-
CO3	2	3	3	-	2	-	-	-	-	-	-	2	3	-
CO4	2	3	3	-	2	-	-	-	-	-	-	2	3	-
CO5	2	2	3	-	-	-	-	-	-	-	-	2	3	-

		JUS	STIFICATION STATEMENT FOR CO-PO MAPPING
COs	POs	Level	Description
COL	DO1	2	Students can be able to apply knowledge of engineering fundamentals to
	FUI		understand principles of HVDC transmission.
CO1	PO2	2	Students will analyze problems related to HVDC links.
COL		2	Students will identify various cost effective measures and design HVDC
		2	system components using Modern trends in HVDC system.
COL		2	Student can able to apply power tools to find the Equipment ratings in
	105	2	HVDC transmission.
CO1	PO12	2	Knowledge of HVDC links and planning of HVDC transmission will
001	1012	2	be helpful to the students for technological change.
			Design the modern power system components and also solve the advances
CO1	PSO1	2	power system problems in the area of power system specialization modern
			trends in DC transmission and power handling capabilities of HVDC lines.
CO2	PO1	2	Develop the 6 and 12 pulse output voltage with the knowledge of
	101	2	fundamentals of basic electrical engineering and mathematics.

CO2	PO2	3	Student will able to analysis complex problem related to 6 pulse and 12 pulse convertes.
CO2	PO3	2	Student will able to design complex HVDC converter equations.
CO2	PO5	2	Student can able to apply power tools to implement equivalent circuit of HVDC transmission.
CO2	PO12	2	Knowledge of 12 pulse converters of HVDC transmission will be helpful to the students for technological change.
CO2	PSO1	3	Develop equivalent HVDC circuit in the area of power system specialization with the knowledge of converter configuration.
CO3	PO1	2	Analysis converter characteristics with the knowledge of fundamentals of basic electrical engineering and mathematics.
CO3	PO2	3	Student will able to analysis complex equations related to HVDC converter control.
CO3	PO3	3	Student will able to design complex HVDC converter and higher order controls.
CO3	PO5	2	Using ETAP/MATLAB software's the firing angle is generated for DC power flow control.
CO3	PO12	2	Knowledge of firing angle control of HVDC transmission will be helpful to the students for technological change.
CO3	PSO1	3	HVDC power transmission can be regulated in different conductions and power flow is maintained using higher level control.
CO4	PO1	2	Students can be able to apply knowledge of engineering fundamentals classify converter faults and its protection.
CO4	PO2	3	Students will analyze problems related to protective filters for harmonic reduction.
CO4	PO3	3	Students will identify various cost effective measures and design HVDC system filter components.
CO4	PO5	2	Student can able to apply power tools to find the DC and AC filter ratings in HVDC transmission.
CO4	PO12	2	Knowledge of harmonics and filter design is helpful to the students for technological change.
CO4	PSO1	3	Design the modern power system filter components and also solve the advances power system problems in the area of power system specialization.
CO5	PO1	2	Students can be able to apply knowledge of engineering fundamentals classify various FACTS devices.
CO5	PO2	2	Students will analyze problems related to controllable parameters used in FACTS system.
CO5	PO3	3	Students will identify various cost effective measures and design FACTS device for various applications.
CO5	PO12	2	Knowledge of FACTS controllers is helpful to the students for technological change.
CO5	PSO1	3	Design of FACTS devices are useful to improve the power quality in modern power system.

UNIT-I Periods] HVDC TRANSMISSION

General considerations, comparison of AC and DC transmission, applications of DC transmission, types of DC links, converter station and terminal equipment, planning for HVDC transmission, modern trends in DC transmission, power handling capabilities of HVDC lines.

UNIT-II Periods STATIC POWER CONVERTRES

Basic AC/DC conversion principles, static converter configuration, 3-pulse, 6-pulse and 12-pulse converters, commutation process, rectifier and inverter operation, equivalent circuit for converter, special features of converter transformers.

UNIT-III

Periods

CONTROL OF HVDC CONVERTERS AND SYSTEMS

Converter control characteristics, system control hierarchy, current and extinction angle, firing angle control, higher level controllers, DC power flow control.

UNIT-IV

Periods]

CONVERTRES FAULTS AND PROTECTION

converter faults, protection against over currents and over voltages in a converter station, surge arresters, smoothing reactors, corona effects, dc line insulators, transient over voltages in DC line, protection of DC line, DC breakers.

Harmonics in HVDC Systems: Harmonics in HVDC systems, harmonic elimination, AC and DC filters.

UNIT-V

Periods]

FACTS

Power flow in AC systems, need of FACTS controllers, relative importance of controllable parameters, basic types of facts controllers, shunt, series and combined shunt series controllers.

TEXT BOOKS:

- 1. R. Padiyar, "HVDC Power Transmission Systems", New Age International Publishers, 2^{nd} edition, 2013.
- 2. Narain G. Hingorani, Laszlo Gyugyi, "Understanding FACTS-Concepts and Technology of Flexible AC Transmission Systems", Wiley India publications 2011.

[10

[12

[12

[14

[12

POWER SYTEM ANALYSIS						
EEE 414	Credits: 3					
Instruction: 3 Periods & 1 Tut/Week	Sessionals Marks:40					
End Exam: 3 Hours	End Exam Marks:60					

Course Outcomes: At the end of the course the student will be able to:

CO	BL	CO Statement
CO1	BL-3	Apply per unit calculations to Develop reactance diagram for a given
001		single line diagram.
COL	DI 2	Apply Gauss-Seidel, Newton-Raphson and Fast Decoupled methods to
	DL-3	Compute different parameters of the load flow problem.
CO2	DI 4	Analyze symmetrical and unsymmetrical faults to Compute fault
COS	BL-4	current of the given single line diagram.
		Analyze the steady state and transient stability on single machine
CO4	BL-4	connected to infinite bus system to Determine steady state and transient
		stability limit.

		Program Outcomes (POs)) a
	I	Domaiı	n Speci	ific PO	S		Domain Independent POs								18
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSC	D1 PS	302
CO1	2	3	1	-	-	-	-	-	-	-	-	1	2		-
CO2	2	3	2	-	2	-	-	-	-	-	-	1	3		-
CO3	2	3	2	-	2	-	-	-	-	-	-	1	3		-
CO4	2	3	2	-	2	-	-	-	-	-	-	1	3		-

		JUST	TIFICATION STATEMENT FOR CO-PO MAPPING
COs	POs	Level	Description
COL	PO1	2	Per unit values are calculated with the knowledge of fundamentals of basic
COI	roi		electrical engineering and mathematics.
COL	PO2	3	Based on the per unit values, formulate the impedance diagram and analyze it
COI	102	5	and develop the reactance diagram.
COL	PO3	1	Calculate the ratings/design parameters of the various electrical equipment's
COI	105	1	with the knowledge of per unit calculations.
COL		1	Recognize the need of per unit calculations for solving the advanced power
		1	system problems in the area of power system specialization.
			Design the modern power system components and also solve the advances
CO1	PSO1	2	power system problems in the area of power system specialization using per unit
			calculations.
CO2	PO1	2	Develop the bus admittance matrix with the knowledge of fundamentals of basic
	101	2	electrical engineering and mathematics.
			Calculate voltage magnitude, phase angles, real power flows, reactive power
CO2	PO2	3	flow, and line losses and analyze the single line diagram using different load
			flow methods with help of bus admittance matrix.
			Design power system components through simulation software's with the
CO2	PO3	2	knowledge of load flow parameters like voltage magnitude, phase angles, real
			power flows, reactive power flow, and line losses.

CO2	PO5	2	Using ETAP/MATLAB software's the load flow parameters like voltage magnitude, phase angles, real power flows, reactive power flow, and line losses are calculated and analyzed for the given single line diagram.
CO2	PO12	2	Recognize the need of load flow calculation for solving the advanced power system problems in the area of power system specialization.
CO2	PSO1	3	Solve the advanced power system problems like congestion management, optimal power flow etc in the area of power system specialization with the knowledge of load flow studies.
CO3	PO1	2	Form the bus impedance matrix with the knowledge of fundamentals of basic electrical engineering and mathematics.
CO3	PO2	3	For the given electrical network using bus impedance matrix and the knowledge of basic electrical circuit theorems fault currents are calculated and also the same is analyzed for symmetrical and unsymmetrical type of faults.
CO3	PO3	2	Ratings/design parameters of the Circuit Breaker and fault limiting reactors are calculated based on the analysis of different types of faults.
CO3	PO5	2	Using ETAP/MATLAB software's the symmetrical and unsymmetrical faults are calculated and analyzed for the given single line diagram.
CO3	PO12	1	Recognize the need of fault current calculations for design of protective equipment and security aspects of power system.
CO3	PSO1	3	Solve the advanced power system problems like contingency analysis, power system security, state estimation etc. with the knowledge of fault calculations.
CO4	PO1	2	Derive the swing equation and as well as concept equal area criteria with the knowledge of basic electrical engineering and mathematics.
CO4	PO2	3	With the knowledge of swing equation/equal area criteria, the steady state and transient stability are analyzed under different disturbances for the single machine connected to infinite bus system.
CO4	PO3	2	Design the rating of the Circuit breakers with calculations of transient stability parameters like critical clearing angle and critical clearing time.
CO4	PO5	2	Using MATLAB software's the transient stability parameters like critical clearing angle and critical clearing time are calculated and analyzed for the given single line diagram.
CO4	PO12	1	Recognize the need of transient stability analysis to design the modern protective equipment under different disturbances.
CO4	PSO1	3	Calculate voltage, frequency and rotor angle stability for a multi-machine system with the knowledge of transient stability analysis.

PER UNIT SYSTEM OF REPRESENTATION

Single line diagram, per unit system, per unit impedance of a 3-winding transformer, per unit impedance and reactance diagram of a power system.

UNIT-II Periods] POWER FLOW ANALYSIS

Formulation of bus admittance matrix, classification of buses, power flow problem, Gauss-Seidel Method, Newton-Raphson method, Decoupled & Fast decoupled method of solving power flow problem.

UNIT-III

UNIT-I

Periods

Periods]

SYMMETRICAL FAULT ANALYSIS

Formulation of bus impedance matrix, 3-phase short circuit currents and reactances of a synchronous machine, methods of calculating symmetrical fault currents, selection of circuit-breakers, fault limiting reactors.

UNIT-IV

Periods]

UN-SYMMETRICAL FAULT ANALYSIS

Symmetrical components, 3-phase power in terms of symmetrical components, sequence impedances and sequence networks, phase shift in delta/star Transformers.

Unsymmetrical faults -L-G, L-L, L-L-G on an unloaded alternator.

UNIT-V [14 Periods]

POWER SYSTEM STABILITY

Concepts of stability (steady state and transient), swing equation, steady state stability limit, equal area criterion, critical clearing angle and time for transient stability, step by step method of solution, methods of improving transient stability.

TEXT BOOKS:

- 1. Hadi Sadat, "Power System Analysis", TMC Publications, 3rd edition, 2010.
- 2. John J. Grainger & William D. Stevenson, Jr.," Elements of Power System Analysis, TMH Publications, 2014.
- 3. I.G. Nagrath & D.P. Kothari, "Modern Power System Analysis", TMH Publications, 4th edition, 2011.

[14

[8]

[12

[12

- 1. B. M. Weedy & B. Cory, "Electric Power Systems", Wiley Publications, 4th edition, 2012.
- 2. J. Duncan Glover, M.S.Sarma & Thomas J. Overbye, "Power System Analysis &Design Systems", CLI Private Ltd., 2012.

POWER SEMICONDUCTOR DRIVES						
EEE 415	Credits: 3					
Instruction: 3 Periods & 1 Tut/Week	Sessionals Marks:40					
End Exam: 3 Hours	End Exam Marks:60					

Course Outcomes: At the end of the course the student will be able to:

CO	BL	CO Statement
		Discuss the operation and characteristics of single phase and three phase
CO1	BL-3	controlled rectifiers fed to D.C motors to Calculate the values of output voltage,
		speed and torque for a given D.C drive.
		Illustrate braking techniques and Explain the four quadrant operation fed Dual
CO2	BL-3	converter. Calculate the values of output voltage, speed and torque in motoring
		and braking modes.
		Demonstrate the operation and speed -torque characteristics of Choppers fed
CO3	BL-4	D.C motors to Select a drive based on mechanical characteristics for a particular
		drive application.
		Classify induction motor speed control methods connected to A.C Voltage
CO4	BL-3	controller, Cycloconverter, VSI and CSI to Examine their use in specific
		applications.
		Describe the operation and speed -torque characteristics of Separate control &
CO5	BL-3	self control of synchronous motors using VSI, CSI and Cycloconverter.
		Examine the possible combinations of converter fed motors.

	Program Outcomes (POs)												DCOa	
	Domain Specific Pos Non-Domain Independent Pos												r505	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 PSO2
CO1	2	3	1	-	2	-	-	-	-	-	-	1	-	2
CO2	2	3	1	-	2	-	-	-	-	-	-	1	-	2
CO3	2	3	1	-	2	-	-	-	-	-	-	1	-	2
CO4	2	3	1	-	2	-	-	-	-	-	-	1	-	2
CO5	2	3	-		-	-	-	-	-	-	-	1	-	2

		Л	USTIFICATION STATEMENT FOR CO-PO MAPPING
COs	POs	Level	Description
		2	Single Phase & three phase half wave, semi and fully controlled converters fed
CO1	PO1	2	D.C motors operation and speed-torque characteristics are discussed with the
			knowledge of basic engineering sciences and fundamental engineering.
COL	DOJ	2	Speed & torque expressions of DC motor are calculated based on converter
	r02	3	output parameters for a particular load.
COL		1	Design a single phase & three phase rectifier circuits connected to D.C drive for
	F03		a given application.
COL	DO5	ſ	Using MATLAB software the performance characteristics of D.C motor fed
	PO3	Z	from rectifier circuits are analyzed.
COL	DO12	1	Recognize the need of DC drives by using rectifier configuration design as per
	POIZ	1	the requirement, since DC drives are mostly used in industrial applications.
COL	DSOJ	C	With the knowledge of various DC drives operation and characteristics, their
	PSO2	Z	design for industrial and research sectors are analyzed.
CO2	PO1	2	The fundamental knowledge of basic engineering mathematics and electrical

			engineering is used to Illustrate braking techniques and four quadrant operations fed Dual converter.
CO2	PO2	3	Based on the knowledge of braking technique circuits, speed & torque parameters are analyzed and their values are calculated.
CO2	PO3	1	Various modes of operations such as motoring, breaking and plugging is utilized for designing dual converter fed dc motors.
CO2	PO5	2	Using MATLAB software, specifications of dual converter are analyzed.
CO2	PO12	1	Recognize the need of braking techniques, in order to be compatible enough for high power drive application based industries.
CO2	PSO2	2	With the knowledge of dual converter operation and characteristics, able to design and analyze the dc drives in industries.
CO3	PO1	2	The fundamental knowledge of basic engineering mathematics, engineering physics and electrical engineering is utilized for demonstrating the operation and speed –torque characteristics of Choppers fed D.C motors.
CO3	PO2	3	In reference to chopper fed dc motors, mathematical derivations of output voltage are formulated and their performance parameters are computed.
CO3	PO3	1	Design a resistance for breaking operation of chopper fed dc motors by selecting parameters, and finding duty cycle and speed of dc motor.
CO3	PO5	2	Using MATLAB/SIMULINK software the characteristics of chopper fed dc series and separately excited motors are analyzed.
CO3	PO12	1	Recognize the need of modes of operation of chopper fed dc motors, performance evaluation in electric drives are analyzed.
CO3	PSO2	2	With the knowledge of chopper fed dc motors, able to design and analyze the dc drives in industries.
CO4	PO1	2	With the knowledge of fundamental electrical engineering and engineering mathematics, control of induction motor by using AC voltage controller, cycloconverter, VSI and CSI operations are explained.
CO4	PO2	3	With knowledge of control of Induction motor by using braking techniques, their application criteria in specific applications are formulated and performance parameters are analyzed.
CO4	PO3	1	Design an Induction motor fed from different AC to AC converters with the knowledge of PWM techniques.
CO4	PO5	2	Using MATLAB/SIMULINK software, performance characteristics of induction motor drive are analyzed.
CO4	PO12	1	Recognize the need of control of induction motor through different control techniques, AC drives are used in industrial applications.
CO4	PSO2	2	With the knowledge of various AC converter operation and characteristics by using PWM control and regenerative breaking, their role in applications like electric drives for industrial and research sectors are analyzed.
CO5	PO1	2	With the knowledge of fundamental electrical engineering and engineering mathematics, synchronous motor operation by VSI, CSI and Cyclo converters are described.
CO5	PO2	3	Based on the knowledge of Separate control & self control of synchronous motors, performance specifications are mathematically derived.

CO5	PO12	1	Recognize the need of self and separately control synchronous motors by CSI and VSI, AC-AC converters are highly useful in electric drive applications.
CO5	PSO2	2	With the knowledge of load commutated CSI fed synchronous motor, their role in applications like electric drives for industrial and research sectors are analyzed.

UNIT I:

[14 Periods] Control of DC motors by Single phase and three phase Converters: Introduction to Thyristor controlled Drives, Single Phase semi and Fully controlled converters connected to d.c separately excited and d.c series motors - continuous current operation - output voltage and current waveforms - Speed and Torque expressions - Speed - Torque Characteristics- Problems on Converter fed d.c motors. Three phase semi and fully controlled converters connected to d.c separately excited and d.c series motors - output voltage and current waveforms - Speed and Torque expressions - Speed -Torque characteristics – Problems.

UNIT II:

Four Quadrant operation of DC Drives: Introduction to Four quadrant operation – Motoring operations, Electric Braking - Plugging, Dynamic and Regenerative Braking operations. Four quadrant operation of D.C motors by dual converters.

UNIT III:

Control of DC motors by Choppers: Single quadrant, Two –quadrant and four quadrant chopper fed dc separately excited and series excited motors - Continuous current operation - Output voltage and current wave forms - Speed torque expressions - speed torque characteristics - Problems on Chopper fed d.c Motors.

UNIT IV:

Control of Induction Motor through Stator voltage: Variable voltage characteristics-Control of Induction Motor by Ac Voltage Controllers - Waveforms - speed torque characteristics. Variable frequency characteristics-Variable frequency control of induction motor by Voltage source and current source inverter and cyclo converters- PWM control - Comparison of VSI and CSI operations - Speed torque characteristics, Static rotor resistance control - Slip power recovery -Static Scherbius drive - Static Kramer Drive - their performance and speed torque characteristics advantages applications .

UNIT V:

Control of Synchronous Motors: Separate control & self control of synchronous motors -Operation of self controlled synchronous motors by VSI, CSI and cyclo converters. Load commutated CSI fed Synchronous Motor - Operation - Waveforms - speed torque characteristics - Applications - Advantages and Numerical Problems.

TEXT BOOKS:

- 1. Fundamentals of Electric Drives by G K Dubey Narosa Publications
- 2. Power Electronic Circuits, Devices and applications by M.H.Rashid, PHI.

REFERENCE BOOKS:

1. Power Electronics – MD Singh and K B Khanchandani, Tata – McGraw-Hill Publishing company, 1998.

2. Modern Power Electronics and AC Drives by B.K.Bose, PHI.

[10 Periods]

[16 Periods]

[12 Periods]

[08 Periods]

- 3. Thyristor Control of Electric drives Vedam Subramanyam Tata McGraw Hill Publications.
- 4. A First course on Electrical Drives S K Pillai New Age International(P) Ltd. 2nd Editon.

POWER SYTEM PROTECTIONEEE 416Credits: 3Instruction: 3 Periods & 1 Tut/WeekSessionals Marks:40End Exam: 3 HoursEnd Exam Marks:60

Course Outcomes: At the end of the course the student will be able to:

CO	BL	CO Statement
		Compare the construction, operation and applications of electromagnetic relays
		and Over Current protection. Determine the settings of PSM and TMS of Over
		Current relay.
CO1	BL-3	Explain the construction, operation and applications of Distance and Differential
		Protection. Determine the minimum value of earthing resistance and percentage
		of winding unprotected for Alternators. Determine relay setting and CT ratio of
		transformer protected by percentage differential protection.
		Explain operation of Static Over current, Distance, Differential protection and
CO2	BL-2	Microprocessor based relay. Identify the difference between electromagnetic and
		static relays.
		Explain the construction, operation and applications of various types of Lightning
CO3	BL-3	arresters. Determine reflected, refracted voltages and currents of Travelling
		waves.
		Explain the construction, operation and application of various types of Fuses and
CO4	BL-3	Circuit Breakers. Determine the TRV/RRRV. Construct substation layout and
		bus bar arrangement using single diagram.

		PSOs												
COs	1	Domaiı	1 Speci	ific PO	S		Domain Independent POs							
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1								PO12	PSO1	PSO2			
CO1	2	3	2	-	-	-	-				-	1	3	
CO2	2	2	-	-	-	-	-				-	1	3	
CO3	2	1	-	-	-	-	-				-	1	3	
CO4	2	3	2	-	2	-	-				-	1	3	

		JU	STIFICATION STATEMENT FOR CO-PO MAPPING
COs	POs	Level	Description
COL	PO1	2	Basic knowledge of electrical engineering is required to Explain the construction
	roi		and operation of electromagnetic relays.
COL	DOD	2	Determine the settings of PSM and TMS of Over Current relay based on the
	PO2	3	knowledge of construction and operation of electromagnetic relays.
COL	DO3	2	Calculate the ratings/design parameters of the various electromagnetic relays with
	105		the knowledge of PSM and TMS.
COL	PO12	1	Recognize the need of relay settings to Solve the advanced power system protection
	r012	1	problems in the area of power system specialization.
			Design the modern power system components and also solve the advances power
CO1	PSO1	2	system problems in the area of power system specialization using PSM and TMS
			calculations.
CO2	PO1	2	Basic knowledge of electrical engineering is required to Explain operation of

			Static Over current, Distance, Differential protection and Microprocessor
			based relay.
CO2	PO2	2	Identify the difference between electromagnetic and static relays.
CO2	PO12	2	Recognize the need of static and digital relays to Explain the advanced power
	FO12	2	system protection relays in the area of power system specialization.
CO2	PSO1	3	Design the modern power system components and also solve the advances power
	1501	5	system problems in the area of power system specialization.
CO3	PO1	2	Basic knowledge of electrical engineering is required to Explain the construction,
005	101	2	operation and applications of various types of Lightning arresters.
CO3	PO2	2	Determine the values of reflected, refracted voltages and currents of Travelling
	FO2	5	waves.
CO3	PO12	1	Recognize the need of lightning arrestors for design of protective equipment and
	1012	1	security aspects of power system.
			Operation and construction of the lightning arresters are needed to Explain the
CO3	PSO1	3	advanced power system protection equipment in the area of power system
			specialization.
			Basic knowledge of electrical engineering is required to Explain operation and
CO4	PO1	2	construction of various types of Fuses and Circuit Breakers and substation
			layout and bus bar arrangement.
			Determine the different parameter of circuit breaker like TRV/RRRV,
CO4	PO2	3	breaking current, making current etc, and also ratings of the fuses.
			Construct substation layout and bus bar arrangement using single diagram.
COA	DO 2	2	Calculate the ratings/design parameters of circuit breakers with the knowledge of
04	PO3	2	TRV/RRRV, breaking current, making current and also ratings of the fuses.
CO4	PO5	2	Circuit breaker parameters like TRV/RRRV are calculated and analyzed using
04	105	2	MATLAB software.
CO4	PO12	1	Recognize the need of TRV/RRRV to design the modern protective equipment under
	1012	1	different disturbances.
CO4	PSO1	3	Design the modern power system components and also solve the advances power
	1001	5	system problems in the area of power system specialization.

PROTECTIVE RELAYING

Faults, causes and effects, Importance of protective relaying, Evolution of protective relays, Protective zones, Primary and backup protection, Desirable qualities of protective relaying, classification of protective relays and schemes, current transformers, potential transformers, basic relay terminology. Operating principle and construction of electromagnetic relays.

Over Current and Earth Fault Protection- Applications of over current protection, relays used in over current protection, time current characteristics, directional relays, protection of parallel feeders, and protection of ring mains. Phase fault and earth fault protection, combined earth fault and phase fault protective scheme, Directional earth fault relay.

UNIT-II

UNIT-I

DISTANCE AND DIFFERENTIAL PROTECTION:

Distance Protection - Principle of operation of distance protection, R-X diagram, universal torque equation, impedance, reactance and mho relay. Zones of protection, auto reclosing. Pilot wire protection and carrier current protection.

[15 Period

[15 Periods]

[10 Periods]

Differential Protection -Types, protection of generators, protection of transformers, and bus-zone protection.

UNIT-III

STATIC AND NUMERICAL RELAYS

Block diagram representation, Merits and demerits of static relays, amplitude and phase comparators, basic block diagrams of static over current, distance and differential protection. Block diagram of microprocessor based relay, advantages.

UNIT-IV

PROTECTION AGAINST OVER VOLTAGES

Causes of over voltages, over voltages due to lightning. Protection against lightning and travelling waves – earth wire, effects of series inductances, shunt capacitance, spark gap, surge arresters, lightning arresters, insulation co-ordination.

UNIT-V

[15 Periods]

[10 Periods]

CIRCUIT BREAKERS AND SUBSTATION LAYOUT

Fuses-Types of fuses, high voltage HRC fuses, applications, selection and discrimination.

Circuit Breakers-Principle of operation, formation of arc, methods of arc extinction, transient recovery voltage, resistance switching, switching of capacitor banks and un-loaded lines, current chopping, ratings and characteristics of circuit breakers. Classification, constructional features of air circuit breakers, oil circuit breakers, air blast circuit breakers, SF-6 circuit breakers and vacuum circuit breakers, testing of circuit breakers.

SUB-STATION LAYOUT & BUS BARS: Classification of substations, substation equipment and their function, bus-bar design and schemes of layout.

TEXT BOOKS:

- 1. Sunil S. Rao, "Switchgear Protection and Power Systems" Khanna Publishers, 13th, edition, 2013,
- 2. B. Ram and D.N. Viswakarma, "Power System protection and Switchgear" TMH Publications, 2nd, edition, 2013.

REFERENCE BOOKS:

- 1. C.L. Wadhwa, "Electrical power Systems", New Age International Publishers, 6th edition, 2010.
- 2. L. P. Singh, "Protective relaying from Electromechanical to Microprocessors", New Age International Publishers, 2nd edition, 2004.

[10 Periods]

POWER ELECTRONICS LABORATORY EEE 417 Credits:2

	Ci cuits.2
Instruction: 3 Periods	Sessionals Marks:50
End Exam: 3 Hours	End Exam Marks:50

Course Outcomes:

At the end of the course the student will be able to:

COs	BLs	CO Statement
COL		Analyze the VI characteristics of SCR and Illustrate different turnoff
	DL-4	and turn on methods.
CO2		Analyze the operation of 1-phase & 3-phase rectifier circuits &
	DL-4	Examine the output waveforms for different firing angles.
COL	DI 4	Analyze the operation of on 1-phase inverter circuits & Examine the
03	BL-4	output waveforms for different frequencies.
		Analyze the operation of on 1-phase cycloconverter with different
COA		frequencies for different loads and Compare the output waveforms of 1-
04	DL-4	phase AC voltage controller circuits for different firing angles for
		different loads.
COF	DI 4	Distinguish TRC & Frequency control methods on chopper circuits &
	BL-4	Examine the output waveforms.

		Program Outcomes (POs)												
	1	Domaiı	1 Speci	fic PO	S		Domain Independent POs							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	1	3	3	1			1	1		1	0	2
CO2	2	3	1	3	3	1			1	1		1	0	2
CO3	2	3	1	3	3	1			1	1		1	0	2
CO4	2	3	1	3	2	1			1	1		1	0	2
CO5	2	3	1	3	2	1			1	1		1	0	2

S.No	Name of the Experiment	CO's
1	V-I characteristics of SCR.	CO1
2	SCR firing circuits (R, RC and UJT).	CO1
3	Forced commutation techniques.	CO1
4	Single-phase semi and full converters.	CO2
5	Three-phase semi-converter.	CO2
6	Single-phase AC voltage controller	CO4
7	Single-phase cyclo converter.	CO4
8	Jones Choppers.	CO5
9	Series converter.	CO3
10	Parallel converter.	CO3

ELECTRICAL MACHINES LABORATORY - II				
EEE 418	Credits:2			
Instruction: 3 Periods	Sessionals Marks:50			
End Exam: 3 Hours	End Exam Marks:50			

Course Outcomes:

At the end of the course the student will be able to:

COs	BLs	CO Statement
CO1	BL-4	Analyze the performance of transformer for 3 phase to 2 phase or 2
		phase to 3 phase conversion and Separate the core losses.
CO2	BI -4	Obtain the speed control characteristics and efficiency characteristics of
	DL-4	3 phase induction machine and Analyze their performance.
CO3	BL-4	Synchronize 3phase alternator with supply, Obtain voltage regulation
005		characteristics and Analyze their performance.

		Program Outcomes (POs)									PSOs			
	I	Domair	n Speci	ific PO	s		Domain Independent POs							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	2	2	1	1			3	-			2	0
CO2	2	3	3	3	2	2			3	1			0	2
CO3	2	3	3	3	2	2			3	1			2	0

S.No	Name of the Experiment	CO's
1	Verification of Scott connection.	CO1
2	Load test on a 3-phase Induction motor.	CO2
3	No load and Block rotor tests on 3-phaseInduction motor.	CO2
4	Speed control of 3-phase Slip-ring Induction motor.	CO2
5	Regulation of an alternator by EMF and MMF methods.	CO3
6	Regulation of an alternator by ZPF method.	CO3
7	V and Inverted V Curves of Synchronous motor.	CO3
8	Slip test on Salient pole Synchronous machine.	CO3
9	3-phase Induction motor runs as a 1-phaseInduction motor.	CO3
10	R-L-C Load Test on a 1-phaseTransformer.	CO1
11	Equivalent circuit of a 1-phase Induction motor.	CO2
12	Line-excited Induction generator.	CO2
13	Separation of losses in single phase transformer.	CO1

PROJEC	T WORK
EEE 4110	Credits: 4
Instruction: 6 Periods / Week	Sessionals Marks:60
End Exam:	End Exam Marks:60

Course Outcomes: At the end of the course the student will be able to:

COs	BLs	CO Statement	POs
CO1	BL-3	Identify the mathematical, engineering and other relevant knowledge that applies to a problem.	PO1
CO2	BI -3	Demonstrate the ability to Identify and Characterize an engineering problem through review research literature describing the causes of the problem and its	PO2 PO12
	BL-3	effects using first principles of mathematics, natural sciences, and engineering sciences.	PSO1 PSO2
CO3	BL-3	Create Select and Apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling (design) of complex engineering activities with an understanding of the limitations.	PO3 PO5
CO4	BL-3	Analysis of cost-effective, environmental friendly designs of engineering systems with effective team work, presentation skills.	PO7 PO9 PO10 PO11

ENGINEERING ECONOMICS AND MANAGEMENT						
EEE 421	Credits: 3					
Instruction: 3 Periods & 1 Tut/Week	Sessionals Marks:40					
End Exam: 3 Hours	End Exam Marks:60					

Course Objectives:

- > To familiarize the students with the concepts of Economics.
- To gain basic understanding of management and manage organizations effectively and to relate the concepts of management with industrial organizations
- To help the students to understand the factors affecting productivity and to acquaint them with the major aspects of production management
- To make them to know the basics of Accounting, entrepreneurship and marketing management.

Course Outcomes: At the end of the course the student will be able to:

CO1	Understand the concepts of Economics
CO2	Gain basic understanding of management and to relate the concepts of management
	with industrial organizations and manage organizations efficiently
CO3	Have the basic knowledge of production management and make decisions
	proficiently
CO4	Understand the basic concepts of accounting, finance and marketing management

Program Matrix

		Program Outcomes (POs)									PSOs			
	Domain Specific POs					Domain Independent POs								
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	-	1	2	-	3	1		
CO2	-	-	-	-	-	-	-	1	2	-	3	1		
CO3	-	-	-	-	-	-	-	1	2	-	3	1		
CO4	-	-	-	-	-	-	-	1	2	-	3	1		

SYLLABUS

UNIT I: Fundamentals of Economics: Periods]

Wealth, Welfare and Scarce Definitions of Economics; Micro and Macro Economics; Demand- Law of Demand, Elasticity of Demand, Types of Elasticity and Factors determining price elasticity of Demand: Utility- Law of Diminishing Marginal Utility, its limitations and exceptions.

[CO 1]

UNIT II: Forms of Business Organizations: Periods]

Features, merits and demerits of Sole Proprietorship, Partnership and Joint Stock Company- Public Enterprises and their types. (CO 2)

UNIT III: Introduction to Management: Periods]

[20

[10

[10

Functions of Management- Taylor's Scientific Management; Henry Fayol's Principles of Management; Human Resource Management –Basic functions of Human Resource Management (in brief). (CO 2) Production Management: Production Planning and Control, Plant Location, Break-Even Analysis- Assumptions, limitations and applications. (CO 3)

UNIT IV: Financial Management:

[10

Periods]

Types of Capital: Fixed and Working Capital and Methods of Raining Finance; Final Accounts-Trading Account, Statement of Profit and Loss and Balance Sheet (simple problems) (CO 4)

UNIT V: Marketing Management and Entrepreneurship: [10 Periods]

Marketing Management: Functions of marketing and Distribution Channels. Entrepreneurship: Definition, Characteristics and Functions of an Entrepreneur. (CO 4)

Text Books:

 S.C. Sharma and Banga T. R., Industrial Organization & Engineering Economics, khanna Publications, Delhi-6. (2006) (Units covered – 3,4 and 6)
 A.R. AryaSri, Managerial Economics and Financial Analysis, TMH Publications, new Delhi, (2014) (Units covered – 1,2,4 and 5)
 S.N.Maheswari, SK Maheswari, Financial Accounting Fifth Edition, Vikas Publishing HousePvt.

Ltd., New Delhi, (2012) (Units covered – 5)

NON-LINEAR SYSTEMS							
PROFESSIONAL ELECTIVE-IV							
EEE 422 (1)	Credits: 3						
Instruction: 3 Periods & 1 Tut/Week	Sessionals Marks:40						
End Exam: 3 Hours	End Exam Marks:60						

UNIT-I:

Introduction to Non-Linear System: Classification of non-linearity, types of non-linearity in physical system, jump phenomena and critical jump resonance curve, methods of analysis of non-linear systems and comparison, isoclines, singular point, limit cycle.

UNIT-II:

Phase Plane Analysis: Concept of phase plane, phase trajectory, phase portraits, methods of plotting phase plane trajectories Vander Pol's equation, stability from phase portrait, time response from trajectories, isoclines method, Pell's method of phase trajectory, and Delta method of phase trajectory construction.

UNIT-III:

Frequency Domain Analysis: Absolute stability, Describing function, DF of typical nonlinearities stability analysis using DF method, stability studies using DF method.

UNIT-IV:

Liapunov Stability: Autonomous Systems: Stability of equilibrium point. Concepts of positive definite/semi definite, negative definite/ semi definite, indefinite functions, Lyapunov function, Liapunov Stability: asymptotic stability, global asymptotic stability, instability.

UNIT-V:

Linearization: Linear systems, linearization of nonlinear systems, input state linearization about equilibrium point, feedback linearization and input/output linearization.

TEXT BOOK:

- 1. M.Vidyasagar, 'Nonlinear systems Analysis', 2nd Edition, 1991, prentice-Hall Inc.
- 2. Nonlinear Systems: Hassan K. Khalil, Prentice Hall of India, second edition.
- 3. Nonlinear Control Systems: Hassan K. Khalil, Prentice Hall of India.

REFERENCE BOOK:

- 1. Control System Engineering: Nagrath and Gopal, Wiley Eastern.
- 2. Applied Nonlinear Control: Jean Jacques E Slotine, Weiping Li
- 3. Automatic Control System: George J. Thaler Brown, Jaico Publications

POWER SYSTEM RELIABILITY **PROFESSIONAL ELECTIVE-IV**

EEE 422 (2)	Credits: 3
Instruction: 3 Periods & 1 Tut/Week	Sessionals Marks:40
End Exam: 3 Hours	End Exam Marks:60

Course Outcomes: At the end of the course the student will be able to:

CO1	Understand the importance of maintaining reliability of power system
	components.
CO2	Apply the probabilistic methods for evaluating the reliability of generation and
	transmission systems.
CO3	Assess the different models of system components in reliability studies.
CO4	Assess the reliability of single area and multi area systems.

Program Matrix

		Program Outcomes (POs)									PSOs			
	I	Domaiı	n Speci	ific PO	S	Domain Independent POs								
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	2	2	1	2	1	1	0	2	1		
CO2	2	2	2	2	2	1	2	2	2	0	2	1		
CO3	2	2	2	2	2	1	2	2	2	0	2	1		
CO4	2	2	2	2	2	1	2	2	2	0	2	1		

SYLLABUS

UNIT-I

BASIC REIABILITY CONCEPTS

The general reliability function, the exponential distribution - mean time to failures - series and parallel systems, markov process - continuous Markov process - Recursive techniques -Simple series and parallel system models.

UNIT-II

GENERATING CAPACITY – BASIC PROBABILITY METHODS

The generation system model - Loss of load indices - Capacity expansion analysis - scheduled outages. Load forecast uncertainty Loss of energy indices, the frequency and duration method.

TRANSMISSION SYSTEMS RELIABILITY EVALUATION

Radial configuration, conditional probability approach, network configurations, state selection.

UNIT-III

GENERATION PLANNING

Comparative economic assessment of individual generation projects, investigation and simulation models, heuristic and linear programming models, probabilistic generator and load models.

UNIT-IV

TRANSMISSION PLANNING

Deterministic contingency analysis, probabilistic transmission system-reliability analysis, reliability calculations for single area and multi-area power systems.

[12 Periods]

[12 Periods]

[12 Periods]

[12 Periods]

UNIT-V DISTRIBUTION PLANNING

Network configuration design-consisting of schemes, security criteria configuration synthesis.

Text Books:

- Roy Billinton and Ronald N Allan, "Reliability Evaluation of Power Systems", PPC, 2nd Edition, 1996.
- 2. V. Sankar, "System Reliability Concepts", Himalaya Publishing House, 2015.
- 3. R.L. Sullivan, "Power System Planning", McGraw Hill International, 1977.
- 4. Wheel Wright and Makridakis, "Forecasting methods and Applications", John Wiley, 1992.
- 5. J. Endremyl, "Reliability Modelling in Electric Power Systems", John Wiley, 2005.

DESIGN OF ELECTRICAL MACHINES PROFESSIONAL ELECTIVE-IV						
I ROFESSIONAL						
EEE 422 (3)	Credits: 3					
Instruction: 3 Periods & 1 Tut/Week	Sessionals Marks:40					
End Exam: 3 Hours	End Exam Marks:60					

Course Objectives:

At the end of the course students should understand

- D.C machines designing part
- Design of transformers
- Design of Induction motors
- Design of Synchronous machines

Contribution to Outcomes:

This course used lectures assignments and class tests to enable the students to

CO1	Design of Armature winding ,field winding & Armature slots.
CO2	Design the core dimensions and windings of Three phase and single phase
	Transformers.
CO3	Design the main dimensions, rotor & stator slots and air gap length of Induction
	and synchronous machines.

SYLLABUS

UNIT I:

Rating and Heating of Motors:

Heating effects, loading conditions and classes of duty, determination of power ratings of motors for different applications, effect of load inertia, load equalization and fly wheel, calculations, environmental factors.

UNIT II:

D.C.MACHINES:

E.M.F generated from full pitch - fractional pitch with and without distributed windings - distribution factor. Design of main dimensions from output equation - Design of Armature windings - Design of field system - Design of inter pole and commutator.

UNIT III: TRANSFORMERS:

Derivation of output equation - volt per turn importance and calculation of main dimensions for three phase and single phase transformers - window dimensions – Yoke design and coil design - Design of tank with tubes.

UNIT IV: INDUCTION MOTOR:

Derivation of output equation - calculation of main dimensions – Stator design - number of slots - shape and area of slots - Rotor design for squirrel cage and slip ring types.

[10 Periods]

[15 Periods]

[13 Periods]

[10 Periods]

UNIT V: SYNCHRONOUS MACHINES:

Derivation of output equation - Calculations of Main Dimensions for salient pole and cylindrical rotor alternators - Stator design - number of stator slots and slot dimensions – Pole design for salient pole generators - pole winding calculations. Design of rotor for cylindrical rotor alternator - Design of rotor windings.

TEXT BOOKS:

- 1. A.K. Sawhney, A Course in Electrical machine Design, Dhanpatrai & Sons,
- 2. M.G. Say, Performance and Design of AC Machines 3rd Edition.
- 3. A.E. clayton, Performance and Design of AC Machines 2004.

PROCESS CONTROL AND AUTOMATION PROFESSIONAL ELECTIVE-IV

EEE 422 (4)	Credits: 3
Instruction: 3 Periods & 1 Tut/Week	Sessionals Marks:40
End Exam: 3 Hours	End Exam Marks:60

SYLLABUS

UNIT I:

Fundamentals of Process Control: Definition of industrial processes and control, Hierarchies in process control systems, block diagram representation of process control system, Current trends in computer control of process plants.

UNIT II:

Strategies for Computer-Aided Process Control: Definition of process, Open loop control, closed loop control, basic principles of Single Controller loop, effects of P, PI and PID controllers, control system response, controllability of process, PID controller tuning techniques, closed loop cycling technique, multi-variable control, feed forward control.

UNIT III:

Programmable Logic Controllers (PLCs): Introduction, principles of operation, architecture of programmable logic controllers, programming the programmable controllers, programming languages, ladder diagram instruments, software, configurations, applications.

UNIT IV:

Distributed Control Systems: Introduction, functional requirements of distributed control system, system architecture, distributed control systems, Leeds and Northup Max-1 distributed control systems, Control bailey Micro – Z distributed control systems.

UNIT V:

Industrial control Applications: Automation strategy of Thermal power plant, distributed system structure of Thermal power plant, man-machine interface, Automation strategy of water treatment plant, distributed digital control, Automation and production planning of steel plant.

Textbooks:

1. Computer based Industrial Control, Krishna Kant, Prentice-Hall India, 2003.

2. Computer Aided Process Control, S.K.Singh, Prentice-Hall India, 2005.

Reference books:

1. Process Dynamics and Control, Seborg, D.E., T.F. Edgar, and D.A. Mellichamp, John Wiley, 2004.

2. Johnson D Curtis, Instrumentation Technology, Prentice-Hall India, (7th Edition), 2002.

3. S.K. Singh, Process control concepts, Prentice-Hall India, 2009.

[12 Periods]

[12 Periods]

[12 Periods]

[12 Periods]

[12 Periods]

ENERGY MANAGEMENT & CONTROL						
EEE 423	Credits: 3					
Instruction: 3 Periods & 1 Tut/Week	Sessionals Marks:40					
End Exam: 3 Hours	End Exam Marks:60					

Course Outcomes: At the end of the course the student will be able to:

CO	BL	CO Statement
CO1	BL-3	Apply Lagrange multiplier method to Determine optimal solution through unit commitment and Economic load dispatch including transmission losses.
CO2	BL-4	Model the single area and two area load frequency control and analyze the steady state and dynamic response of power system.
CO3	BL-4	Analyze Automatic Voltage Regulator mechanism and Classify various excitation systems
CO4	BL-2	Identify different levels of the EMS and State their functions. Describe Operating States of Power System.
CO5	BL-3	Discuss about energy management system and Apply Energy diagnosis procedure for Power Distribution systems, Lighting systems, Compressed Air system, Air Condition and Ventilation system.

	Program Outcomes (POs)									DS	O g			
		Domai	n Speci	fic POs	3		No	n-Dom	ain Ind	ependen	t POs		rs	Us
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	1	-	2	-	-	-	-	-	-	1	2	-
CO2	2	3	2	-	2	-	-	-	-	-	-	1	2	-
CO3	2	3	1	-	-	-	-	-	-	-	-	1	2	-
CO4	2	3	-	-	-	-	-	-	-	-	-	1	2	-
CO5	2	3	-	-	-	-	-	-	-		-	1	2	-

	JUSTIFICATION STATEMENT FOR CO-PO MAPPING						
Cos	POs	Level	Description				
COL	DO1	2	Student will be able to find an optimal solution using basic mathematical				
	POI		optimization techniques.				
COL	DOJ	2	Students will be able to identify and formulate problems in the area of				
	PO2	3	economic operation of power system.				
COL		1	Design economic system components that meet economic, environmental,				
	103	1	social, political, ethical, health and safety, and sustainability requirements				
COL		2	Student will be able to design economic network in power system				
COI POS			simulation tools.				
			Student will be able to formulate the problems in the area of power system				
CO1	PO12	1	control and recognize the need for life -long learning in context of				
			technological change in integrated power system operation and control.				
COL	PSO1 2		Identify and formulate problems in the area of economic operation of power				
001	1501		system.				
CO2	PO1	2	Student will be able to predict the constraints involved in load dispatch of				
0.02	101	2	different types of power plant and find an optimal solution using basic				

			mathematical optimization techniques.
		_	Students will be able to identify and formulate problems in the area of
CO2	PO2	3	economics of power system.
			Design single area control system components that meet economic.
CO2	PO3	2	environmental, social, political, ethical, health and safety, and sustainability
	100	-	requirements
			Student will be able to design single area control network in power system
CO2	PO5	2	student will be able to design single area control network in power system
			Simulation tools.
000	DO12	1	Student will be able to formulate the problems in the area of power system
	PO12	1	control and recognize the need for life –long learning in context of
			technological change in integrated power system operation and control.
CO2	PSO1	2	Identify and formulate problems in the area of economic operation of power
			System.
CO3	PO1	2	and voltage control by using basic methometical techniques
			Students will be able to identify and formulate maklems in Automatic
CO3	PO2	3	Students will be able to identify and formulate problems inAutomatic
			Generation control.
CO3	PO3	1	Design economic system components that meet economic, environmental,
			social, political, ethical, health and safety, and sustainability requirements
CO2	DO12	1	Student will be able to formulate the problems in the area of power system
	POIZ	1	control and recognize the need for life –long learning in context of
			Identify and formulate problems in the area of economic operation of power
CO3	PSO1	2	system.
			Student will be able to predict the different operating states of power system
CO4	P01	2	and find an optimal solution using basic mathematical optimization
			techniques.
CO4	PO2	2	Students will be able to identify and formulate problems in the area of
001	102	2	economics of power system.
			Student will be able to formulate the problems in the area of power system
CO4	PO12	1	control and recognize the need for life -long learning in context of
			technological change in integrated power system operation and control.
CO4	PSO1	2	Identify and formulate problems in the area of economic operation of power
004	1501	2	system.
			Student will be able to identify the equipment and domain of energy
CO5	P01	2	conservation and audit in power systemand find an optimal solution using
			basic mathematical optimization techniques.
COS	PO2	2	Student will be able to design, analyze and evaluate an energy audit and the
	102	2	benefits of different energy management techniques
			Student will be able to select appropriate energy conservation method to
CO5	PO12	1	reduce the wastage of energy and recognize the need for life -long learning
	1012	-	in context of technological change in integrated power system operation and
			control
CO5	PSO1	2	Identify and formulate problems in the area of economic operation of power
			system using unterent energy management techniques.

UNIT-I ECONOMIC OPERATION OF POWER SYSTEMS

Various aspects of economic operation, characteristics of steam, cogeneration and hydroelectric units, economic dispatch problem of thermal units with and without considering transmission losses using Lambda-iteration method, derivation of transmission loss formula, coordination equation, penalty factors, unit commitment problem and solution using Lagrange relaxation method, economic dispatch versus unit commitment, hydrothermal coordination problem and solution using Lagrange relaxation method, optimal load flow problem.

UNIT-II

REAL POWER AND FREQUENCY CONTROL

Basic generator control loops, importance of frequency control, load-frequency control model, automatic generation control, automatic generation control in single and two-area systems, automatic generation control with economic dispatch control, speed governor dead-band and its effect on automatic generation control.

UNIT-III

REACTIVE POWER AND VOLTAGE CONTROL

Reactive power flow, methods of voltage control-injection of reactive power by using shunt capacitors, series capacitors, synchronous compensators, tap-changing transformers, booster transformers and phase-shift transformers, types of excitation system, block diagram of automatic voltage regulator, automatic voltage regulator model.

UNIT-IV

EMERGENCY CONTROL

Energy control center - various levels - national, regional and state level - SCADA system computer configuration - function - monitoring, data acquisition and controls - EMS system, Power system operating states and control actions, power system security, power system state estimationstatic and dynamic.

UNIT-V

ENERGY AUDITING

Energy management system model, definition of energy audit, contents of energy audit, energy audit laws and regulations, key reasons for energy audit, energy diagnosis methods, energy diagnosis of power distribution systems, lighting systems, compressed air system, air condition and ventilation system, case study.

Text Books:

Hadi Sadat, "Power System Analysis", TMC Publications, 3rd edition, 2010. 1.

B. M. Weedy & B. Cory, "Electric Power Systems", Wiley Publications, 4th edition, 2012. 2.

O.I.Elgerd "Electric Energy Systems Theory-An Introduction", TMH edition, 2nd edition, 3. 2012.

4. I.G. Nagrath & D.P. Kothari, "Modern Power System Analysis", TMH Publications, 4th edition, 2011.

[12 Periods]

[12 Periods]

[12 Periods]

[12 Periods]

[12 Periods]

Reference books:

1. L.P. Singh, "Advanced Power System Analysis and Dynamics", New Academic Science Ltd., 6th edition, 2011.

2. Mahalanabis A. K., Kothari D.P. and Ahson S.I., "Computer Aided Power System Analysis and Control, TMH Publications, 1999.

3. BSR Energy Management Hand Book (e-book).

4. Amit Kumar Tyagi, "Energy Audit and Management", Tata Energy Rersearch Institute (TERI), 2001.

5. Paul W. Callghan, "Energy Management and a comprehensive Guide".

POWER SYSTEM SIMULATION LABORATORY					
EEE 424	Credits: 2				
Instruction: 3 Periods	Sessionals Marks:50				
End Exam: 3 Hours	End Exam Marks:50				

Course Outcomes: At the end of the course the student will be able to:

COs	BLs	CO Statement
CO1	BL-3	Obtain Y-bus and Determine String efficiency using MATLAB program.
CO2	BL-4	Analyze the performance of transmission lines, transient stability and economic dispatch using MATLAB program.
CO3	BL-4	Analyze and Simulate symmetrical, unsymmetrical faults and load flow methods for a given power system network using ETAP software.
CO4	BL-4	Analyze and Simulate single area and two-area load frequency mechanism using MATLAB software.

		Program Outcomes (POs)											PSOs	
	I	Domaiı	n Speci	ific PO	s	Domain Independent POs								
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	2	3	3				1	1		1	2	0
CO2	2	3	2	3	3				1	1		1	2	0
CO3	2	3	2	3	3				1	1		1	2	0
CO4	2	3	2	3	3				1	1		1	2	0

S.No	Name of the Experiment	CO's			
1	Formation of Y-bus using MATLAB Software	CO1			
2	Performance Analysis of Transmission Lines using MATLAB Software	CO2			
3	String Efficiency of the Insulator using MATLAB Software	CO1			
4	Solution of Swing Equation using MATLAB Software	CO2			
5	Optimal Operation of Thermal Units without considering Transmission Losses using				
	MATLAB Software				
6	Optimal Operation of Thermal Units considering Transmission Losses using				
	MATLAB Software				
7	Three Phase Short circuit Analysis using ETAP Software	CO3			
8	Load Flow Analysis using ETAP Software	CO3			
9	Single Area Load Frequency Control Using MATLAB Software	CO4			
10	Two Area Load Frequency Control Using MATLAB Software	CO4			

CONTROL SYSTEMS LABORATORY

EEE 425	Credits: 2
Instruction: 3 Periods	Sessionals Marks:50
End Exam: 3 Hours	End Exam Marks:50

Course Outcomes: At the end of the course the student will be able to:

COs	BLs	CO Statement
CO 1	BL- 4	Obtain the speed-torque characteristics of DC and A.C Servo motors and
		Analyze their performance.
CO 2	BL- 4	Obtain the characteristics of Synchro, BLDC motor, DC position control
		system and Magnetic amplifier and Analyze their performance.
CO 3	BL-4	Analyze the response of 1 st , 2 nd and 3 rd order systems with and without
		feedback and Compare their waveforms graphically for different input signals.
CO 4	BL-4	Design the compensators and Determine their stability using Bode plot
		techniques.
CO 5	BL-4	Estimate the effect of Temperature control system and Compare with and
		without controllers

		Program Outcomes (POs)											PSOs	
		Domai	n Speci	fic POs	5	Domain Independent POs								
COs	PO1 PO2 PO3 PO4 PO5 PO6 PO7					PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	2	3	1	3		1	-	-	1	1	-	1	0	1
CO2	2	3	1	3		1	-	-	1	1	-	1	0	1
CO3	2	3	1	3		1	-	-	1	1	-	1	0	1
CO4	2	3	1	3		1	-	-	1	1	-	1	0	1
CO5	2	3	1	3		1	-	-	1	1	-	1	0	1

S.No	Name of the Experiment	CO's
1	Study of Lead, Lag and Lead-Lag compensating networks.	CO4
2	Speed - Torque characteristics of a DC Servomotor.	CO1
3	To study the 'Magnetic Amplifier'.	CO2
4	Linear system simulator	CO3
5	Speed torque characteristics of A.C. Servo motor	CO1
6	Synchro transmitter and receiver pair	CO2
7	DC Motor Speed control characteristics	CO1
8	To study the D.C Position control system	CO2
9	To study the temperature controller using P, PI, PD and PID modes of operation	CO5
10	To study the performance of BLDC motor	CO2

PROJEC	CT WORK
EEE 426	Credits: 8
Instruction: 6 Periods / Week	Sessional Marks:60
End Exam: 3 Hours	End Exam Marks:80

Course Outcomes: At the end of the course the student will be able to:

COs	BLs	CO Statement	POs
			PO2
			PO3
			PO4
CO1	BL-4	Conduct scientific, engineering experiments using hardware and software tools	PO5
		of their own, Analyse and Interpret data.	PO6
			PSO1
			PSO2
		Demonstrate collaborative skills and independent learning through working in a	PO9
CO2	BL-4	team to complete a task within a stipulated time using project management tools.	PO11
	DI 4	Demonstrate skills with ethical responsibility in writing project reports and oral	PO8
003	BL-4	presentation of the work to a panel of experts.	PO10