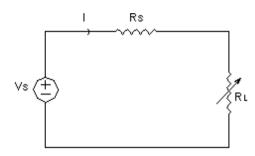
CONDITION FOR MAXIMUM POWER AND MAXIMUM REACTIVE POWER

I. CONDITION FOR MAXIMUM POWER:

The maximum power transfer theorem states that maximum power will be delivered to that load resistance R_L for which $R_L = R_S$ driven by an independent voltage source having a series resistance R_S .

Let us consider a circuit given below:



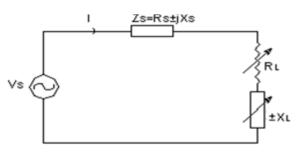
For this circuit the power absorbed by the load resistance 'R_L' is, $P_L = I^2 R_L$ where $I = V_S / (R_S + R_L)$

$$\therefore P_L = \left(\frac{V_S}{R_S + R_L}\right)^2 R_L = V_S^2 \cdot \frac{R_L}{\left(R_S + R_L\right)^2}$$

To get the condition for this power to be maximum, differentiate P_L w.r.t. ' R_L ' and equate it to zero.

$$i.e. \frac{dP_L}{dR_L} = 0 \implies \frac{d}{dR_L} \left[V_S^2 \frac{R_L}{(R_S + R_L)^2} \right] = 0$$
$$\implies \frac{V_S^2 \left[(R_S + R_L)^2 \cdot 1 - R_L \cdot 2 (R_S + R_L) \right]}{(R_S + R_L)^4} = 0$$
$$\implies \left[(R_S + R_L)^2 \cdot 1 - R_L \cdot 2 (R_S + R_L) \right] = 0$$
$$\implies (R_S + R_L) - 2R_L = 0$$
$$\boxed{R_L = R_S} \quad and \ P_{L \max} = \frac{V_S^2}{4R_S} \text{ watts.}$$

Now consider the most interesting *A/c circuit* given below:



Zs = Source internal impedance;

Rs = source internal resistance;

Xs = source internal reactance and it could be *either inductive reactance or capacitive reactance*;

 $Z_L = Load$ impedance;

 R_L = Load resistance;

 X_L = Load reactance and it could be *either load inductive reactance or load capacitive reactance*;

To obtain the condition for power transfer, let us analyze the following cases:

<u>Case-1</u>: If both R_L and X_L are variable.

We know that $P_L = I^2$. R_L

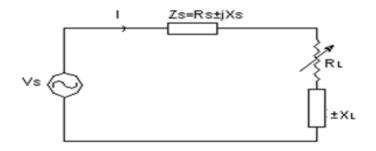
By looking at the given circuit one can easily confirm that the condition for maximum P_L is

$$R_L = R_S$$
 and $X_L = X_S^*$ i.e., X_L is the conjugate of X_S.

Thus, if $Z_L = Z_S^*$ i.e., if Z_L is the complex conjugate of Z_S then, the power transferred to the

load will be maximum.

<u>Case-2</u>: If only R_L is variable and X_L is constant.



$$P_L = I^2 R_L = \left(\frac{V_s}{Z}\right)^2 R_L;$$
 where $\overline{Z} = \overline{R}_L + \overline{Z}_1;$ and $Z_1 = \left(R_s + j\left(X_s + X_L\right)\right)$

Proof:

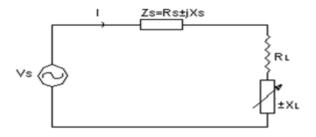
$$P_L = \left(\frac{V_s}{Z}\right)^2 R_L = V_s^2 \left(\frac{R_L}{\left(R_L + Z_1\right)^2}\right).$$

$$\therefore \frac{dP_L}{dR_L} = 0 \Longrightarrow \frac{V_s^2 \left[\left(R_L + Z_1\right)^2 \cdot 1 - R_L \cdot 2 \left(R_L + Z_1\right)\right]}{\left(R_L + Z_1\right)^4} = 0$$

$$\Rightarrow (R_L + Z_1)^2 - 2R_L (R_L + Z_1) = 0 \qquad \Rightarrow (R_L + Z_1) = 2R_L \Rightarrow R_L = |Z_1|.$$

Therefore, the condition for $P_L \max \left[R_L = |Z_1| \right]$.

Case-3: Only X_L is variable and R_L is constant



$$P_{L} = I^{2} R_{L} \text{ where } I = \frac{V_{S}}{(R_{S} + R_{L}) + j(X_{S} + X_{L})}.$$

Then, P_{L} will be max, when I is max. i.e. when $X_{L} = X_{S}^{*}$ for a given R_{I}

II. CONDITION FOR MAXIMUM REACTIVE POWER:

For the above circuit the reactive power consumed by the load is given by $Q_L = I^2 X_L$.

where
$$I = \frac{V_S}{(R_S + R_L) + j(X_S + X_L)}$$

 $\therefore Q_L = \left(\frac{V_S}{Z}\right)^2 X_L; \quad Z = Z_1 + jX_L; \quad where \quad Z_1 = \left((R_S + R_L) + jX_S\right)$

The condition for Q_L max. is obtained by calculating $\frac{dQ_L}{dX_L} = 0$, which yields $X_L = |Z_1|$ with the

sign of the X_L opposite to that of X_S .

As an example, with $V_s = 400$ V; $R_s = 30$ ohms; $X_s = 20$ ohms (inductive reactance); $R_L = 25$ ohms; the values obtained are $Q_{L max} = -2076.65$ Reactive VA (capacitive) and the corresponding $X_L = -58.52$ ohms (capacitive reactance).

